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This report is about some spinoff 
from the plotting methods for principal 
components described at the Ninth Inter- 
face Symposium (Wachter (1976a)). The 
results go back to joint work of Colin 
Mallows and the present author in 1969 at 
Bell Telephone Laboratories, Mallows 
Wachter (1970). What is new is a 
rigorous proof of the theorem, stated 
below, on which the probability plotting 
methods for multiple discriminant ratios 
and related quantities from large multi- 
variate data sets can be based. The 
proof is given in a Harvard Research Memo, 
Wachter (1976c), which is now being 
expanded for publication. The present 
report is a brief sketch of the content, 
uses, and limitations of the results. 

A typical problem which our methods 
address arises when we have groups of 
observations on, say, a dozen variables 
and we want to judge whether discriminant 
analysis is worth pursuing. We offer a 
quick graphical method for comparing the 
data against a standard null hypothesis 
under which the variables contain no 
information relevant for discriminating 
among groups. 

In all cases our methods rely on 
calculations of the asymptotic empirical 
measure of a set of eigenvalues or 
singular values or other roots. Figure 1 

displays the distribution function of an 
empirical measure, a step function with a 
step of size l/p at each of p values. We 
deal with asymptotic situations in which, 
in one way or another, the number of 
steps, p, is going to infinity, yielding 
an increasingly gentle staircase like 
Figure 1 in contrast to the few big jumps 
of Figure 2. 

Figure 1. 

Figure 2. 
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The particular p values of interest 
to us are random variables L1...Lp whose 
joint density is proportional to 

1L.( m- 1) /2(1- L.)(n- p- 1) 

We call them the Fisher- Hsu - Roy - Girshick- 
Mood roots. They are the solutions to a 
familiar determinental equation in 
random matrices; their joint distribution 
was discovered simultaneously in 1939 by 
these five men. They play a role in 
multivariate analysis of variance and in 
canonical correlations as well as in 
discriminant analysis and go under many 
names. The equivalence of null hypoth- 
eses in these areas to the set of 
assumptions in Theorem 1 follows easily 
from the expositions in standard text- 
books like Anderson (1958) or Dempster 
(1969). 

Theorem 1 brings us the happy news 
that the empirical measure of the Fisher - 
Hsu- Roy - Girshick -Mood roots converges in 
distribution to a fixed limit with a 
density in simple closed form. The 
convergence takes place as the dimension 
and degree -of- freedom parameters p,m and 
n in the expression for the joint density 
go to infinity while their ratios 
approach fixed parameters. 

Theorem 1: Suppose 
1. Z or Z(n) is a p(n) by n 

dimensional matrix whose columns are 
mean -centered independent exchangeable 
multivariate normal random vectors and 
whose transpose is Z*. 

2. J is an n by n projection matrix 
of rank m. 

3. Kn is the empirical measure of 
the p(n) positive solutions x to 
det IZJZ" - = 0 . 

4. Prob is the space of proba- 
bility measures on the real line with the 
topology of weak convergence. 

5. As , p(n) and m(n) 
with <1. Then as n-} , the random 
element Kn in Prob IR converges in 
distribution to the fixed element of 
Prob concentrated on [A2,B2] with 
density 

(y-A2)(B2-y) / (2Trß(1-y)y) 

where 

A 47171-71f7 - and B = + 

The difficulty of this theorem, 
responsible for the seven year gap 
between the discovery by Dr. Mallows and 
the author of the limit formula and the 
present proof, is stochastic degeneracy 
of the limit. For each triplet of finite 
values of p,m, and n, the empirical 
distribution function is a random step 
function. It is easy to imagine a limit 



which is still random rather than fixed. 
That the limit be fixed, that is, sto- 
chastically degenerate, is equivalent by 
Wachter (1974), 3.2, to the assertion 
that the roots be asymptotically inde- 
pendent. In effect we need this inde- 
pendence to simplify expressions for 
moments. The proof in Wachter (1974c) 
insures against random limits by a 
conditioning argument and throws the 
onus onto keeping convergence uniform 
over the conditioning events. It thus 
depends upon the new uniform convergence 
theorems for random matrix spectra 
proved in Wachter (1976b). 

The assumptions in Theorem 1 are the 
standard null assumptions of the areas 
of application, but they are highly 
restrictive. In particular, they require 
multivariate normality. It is possible 
that uninteresting departures from 
normality, instead of interesting de- 
partures from the exchangeability of 
groups, could be responsible for bad fit 
of data to null hypothesis. Unfortu- 
nately, normality, via rotational in- 
variance, is crucial to the proof of 
Theorem 1. On the other hand, the 
parallel theorems for principal compo- 
nents in Wachter (1976a and b) hold 
without any distributional assumptions 
beyond weak moment bounds, tempting us 
to conjecture the appropriateness of the 
limit formula even in the absence of 
normality. 

.5 
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No simulations have yet been done to 
test the speed of convergence in Theorem 
1 itself, but simulations have been 
completed in the principal component case 
which suggest convergence rapid enough to 
make plots for p =12 or more informative. 

Figure 3 shows densities for the 
limiting empirical measures of Theorem 1 
for a variety of values of and a. Each 
graph is positioned in the figure 
according to its value of (for the 
x -axis) and (for the y- axis). The 
operation of replacing by 1 -p and 
reflecting each graph about the center 
would produce further cases. 

The densities in Figure 3 give a more 
intuitive sense of how the Fisher -Hsu- 
Roy- Girschick -Mood roots tend to spread 
out when there are many of them than does, 
for instance, the expression for their 
joint density. Some surprises lurk in 
the graphs. Notice, for instance, that 
for small enough and large enough 
most of the roots (which have an inter- 
pretation as squared correlations) clump 
above .99. Without theoretical guidance 
one might wrongly sieze on correlations 
this large as grounds for rejecting the 
null hypothesis. Notice also that when 

and are near 1/2 the roots tend to 
separate into two bunches. Procedures 
which include linear discriminators in 
an analysis until a large gap between 
roots is reached would operate merrily 
in this situation, even though in fact 
the null hypothesis is true. 

Figure 3. 
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Besides instructing our intuition, 
Theorem 1 provides plotting points for 
quantile -quantile plots of sets of roots 
from data against theoretical values 
under the null hypothesis. We illus- 
trate this method with an example of a 
discriminant analysis, performed during 
research into talker identification at 
Bell Telephone Laboratories described in 
Bricker et al. (1971). We begin with 
measurements of p variables replicated k 
times on each of m groups. In this case 
the p =19 variables are spectral measure- 
ments on utterances. There are m =172 
groups of utterances consisting of k 
utterances each. Each group corresponds 
to a single talker repeating the same 
digit four times. The aim of the 
analysis is to discriminate between 
groups, with the hope of finding vari- 
ables which will efficiently classify a 
new utterance into one of the groups, 
that is, assign an utterance to the 
person who spoke it. 

Like much multivariate research, the 
data set in this problem is large. Many 
alternative analyses need to be tried 
and the cost of computing new variables 
in any one analysis can mount up. Thus 
there is a premium on methods which help 
us recognize hopeless from promising 
analyses at an early stage. It is pre- 
cisely under such circumstances that our 
methods have something to offer. 

Let W be the sample within -group 
covariance matrix pooled across groups 
and let B be a "between- group" covariance 
matrix, the sample covariance matrix of 
the group centroids or means. Our roots 

sometimes called discriminant 
ratios, are the p eigenvalues of 
(W +B)-1B, though we can calculate them 
via singular value decompositions with- 
out actually forming W and B. The 
ordered roots for this data set appear 
in the second column of the table in 
Figure Without a standard of compar- 
ison these eigenvalues may not seem 
especially illuminating. A standard of 
comparison is just what Theorem 1 
provides. 

Suppose R is the distribution 
function for the density in Theorem 1. 
In this problem (trading one degree of 
freedom for the grand mean) n= 172514 -1 
and we set =19 /n =.028 and =172/n =.249. 
For each i define Xi to be the value 
such that R(Xi)=i/(p+1). The computer 
routines listed in Wachter (1976a) can 
be used to find Xi if the subroutines 
DENSIT and RANGE are altered in an 
obvious fashion, but for pencil -and- 
paper accuracy a hand - calculator 
suffices. The values X1 ... X19 for 
this p and appear in Column C. We 
plot Li on the y -axis against Xi on the 
x -axis for i= 1,2...p =19. Agreement 
between the data and the null hypothesis 
would manifest itself by points lying 
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along a straight line through the origin 
at 45 °. 
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Table of Eigenvalues Li from Talker 
Identification Data and Quantiles Xi 
from Null Hypothesis with =.028 ; 

=.249. 

It is evident that the resulting 
plot, in Figure 5, shows little agree- 
ment with the null hypothesis. The 
points depart radically from the 45° line 
and their locus curves distinctly. In 
this problem this is welcome information, 
for it suggests that talkers are by no 
means exchangeable, so that additional 
labour invested in the calculation of 
discriminant coordinates ought to prove 
justified. In fact, as described in 
Bricker et al. (1971), identification 
strategies using five linear discrimi- 
nators turned out to be highly success- 
ful at identifying new utterances by 
talkers in this population. 

It would be desirable to go further 
and explore the departure from the null 
hypothesis indicated by Figure 5 by 
constructing plots of the Li against 
quantiles derived for various alternative 
hypotheses of structure in the data use- 
ful for discrimination. For the parallel 
methods for principal components 
described in Wachter (1976a) quantiles 
under alternative hypotheses are avail- 
able, but for discriminant ratios Theorem 
1 does not furnish any information except 
under the null hypothesis. It offers no 
guidance as to how many discriminant 
coordinates we should retain in an 
analysis or how we should employ them. 
In this regard the present methods are 
severely limited in scope. 

On the other hand, the quick graphi- 
cal check of the data against the null 
hypothesis based on Theorem 1 becomes 
feasible for just those high- dimensional 
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cases where tables of standard test 
statistics become sparse and intuition 
requires instruction. A by- product of 
more extensive results for principal 
components and general random matrix 
spectra, these methods fill a small but 
nagging gap in our collection of 
statistical tools for approaching 
multiple discriminant analysis and 
related fields. 

REFERENCES 

T.W. ANDERSON (1958). An Introduction 
to Multivariate Statistical Analysis, 
Wiley, N.Y. 

BRICKER, GNANADESIKAN, MATHEWS, 
PRUZANSKY, TUKEY, WACHTER WARNER 
(1971). "Statistical Techniques for 
Talker Identification," Bell System 
Technical Journal, 50, 1427 -1454. 

A.P. DEMPSTER (1969). Elements of 
Continuous Multivare iatAnalysis, 
Addison -Wesley, Reading, Mass. 

833 

W -76 -2, NS -335, Harvard University 
Department of Statistics. 

ACKNOWLEDGEMENT 

This work was facilitated by Grant 
SOC -75 -15702 from the National Science 
Foundation. 


